的机遇中,他们寻得了一块珍贵无比的红宝石。洛风望着这块红宝石,脑海中灵光一闪,以它为核心,精心设计出一套精妙绝伦的装置。秦慕伊则凭借自己精湛的技艺,打造出以闪光灯为泵浦源的能量注入机关。
当一切准备就绪,二人怀着既紧张又期待的心情,启动了这套凝聚着他们无数心血的装置。刹那间,一道耀眼夺目的红色光芒从装置中喷射而出,正是波长为6943纳米的红色奇光。这历史性的一刻,标志着奇光时代的正式开启,洛风与秦慕伊的名字,也因此传遍了大街小巷,成为人们口中传颂的传奇。
奇光运转:光的有序放大之谜
粒子数反转:奇光诞生的关键契机
要产生奇光,首要条件便是实现粒子数反转。在正常状态下,物质中的原子大多处于低能级,就如同平静湖面上的粼粼波光,安稳而静谧。为了打破这种平衡,让更多原子跃迁至高能级,就需要外界给予能量,洛风将这个过程称作泵浦。泵浦的方式多种多样,常见的有光泵浦、电泵浦等。以光泵浦为例,就好像给原子投喂神奇的“能量仙丹”,让它们从低能级奋力“跳跃”到高能级。当高能级的原子数量超过低能级的原子数量时,就实现了粒子数反转。此时的物质,就如同被点燃的火药桶,充满了不稳定的能量,为受激辐射的发生创造了绝佳条件。
光学谐振腔:奇光的放大与提纯妙法
实现了粒子数反转后,还需要一个神奇的装置来对受激辐射产生的光进行放大和提纯,这个装置便是秦慕伊精心构思打造的光学谐振腔。光学谐振腔由两块平行放置的镜子组成,一块是能将光全部反射的全反射镜,另一块是能让部分光透过的部分反射镜。当受激辐射产生的光子在谐振腔内穿梭时,就如同在一个神秘的迷宫中来回奔跑嬉戏。每反射一次,就会激发更多的受激辐射,使光子数量如春日竹笋般迅猛增加,实现光的放大。同时,由于只有沿着谐振腔轴线方向传播的光子才能在腔内多次反射并不断放大,其他方向的光子则会很快逃离这个神奇的“迷宫”,从而保证了输出奇光具有极高的方向性。而部分反射镜则如同一位精明的把关者,允许一部分放大后的光输出,最终形成了我们所看到的神奇奇光束。
奇光材料:铸就奇光性能的